Math Formulas ► Complex numbers ► Sets of Numbers ► Set Identities
Math Formulas ► Set Identities
Definitions:
Universal set : I
Empty set: ∅
Union of sets
A∪B={x:x∈A or x∈B} |
Intersection of sets
A∩B={x:x∈A and x∈B} |
Complement
A′={x∈I:x/∈A} |
Difference of sets
A∖B={x:x∈A and x/∈B} |
Cartesian product
A×B={(x,y):x∈A and y∈B} |
Set identities involving union
Commutativity
A∪B=B∪A |
Associativity
A∪(B∪C)=(A∪B)∪C |
Idempotency
A∪A=A |
Set identities involving intersection
Commutativity
A∩B=B∩A |
Associativity
A∩(B∩C)=(A∩B)∩C |
Idempotency
A∩A=A |
Set identities involving union and intersection
Distributivity
A∪(B∩C)=(A∪B)∩(A∪C) |
A∩(B∪C)=(A∩B)∪(A∩C) |
Domination
A∩∅=∅ |
A∪I=I |
Identity
A∪∅=∅ |
A∩I=A |
Set identities involving union, intersection and complement
Complement of intersection and union
A∪A′=I |
A∩A′=∅ |
De Morgan's laws
(A∪B)′=A′∩B ′ |
(A∩B)′=A′∪B ′ |
Set identities involving difference
B∖A=B∖(A∪B) |
B∖A=B∩A′ |
A∖A=∅ |
(A∖B)∩C=(A∩C)∖(B∩C) |
A′=I∖A |
Tidak ada komentar:
Posting Komentar